From experiments with purified proteins, it has been concluded that factor XIa (FXIa) is inhibited in plasma mainly by alpha 1-antitrypsin (a1AT), followed by antithrombin III (ATIII), C1-inhibitor (C1Inh), and alpha 2-antiplasmin (a2AP). However, the validity of this concept has never been studied in plasma. We established the relative contribution of different inhibitors to the inactivation of FXIa in human plasma, using enzyme-linked immunosorbent assays (ELISAs) for the quantification of complexes of FXIa with a1AT, C1Inh, a2AP, and ATIII. We found that 47% of FXIa added to plasma formed complexes with C1Inh, 24.5% with a2AP, 23.5% with a1AT, and 5% with ATIII. The distribution of FXIa between these inhibitors in plasma was independent of whether FXIa was added to plasma, or was activated endogenously by kaolin, celite, or glass. However, in the presence of heparin (1 or 50 U/mL), C1Inh appeared to be the major inhibitor of FXIa, followed by ATIII. Furthermore, at lower temperatures, less FXIa-C1Inh and FXIa-a1AT complexes but more FXIa-a2AP complexes were formed. These data demonstrate that the contribution of the different inhibitors to inactivation of FXIa in plasma may vary, but C1Inh is the principal inhibitor under most conditions.