The in vivo and in vitro effects of nitric oxide (NO) synthase inhibitors and lipopolysaccharide (LPS) on reactivity of guinea pig airways were examined. In isolated, perfused tracheas from untreated animals, the NO synthase inhibitors, N omega-nitro-L-arginine methyl ester (L-NAME; 10(-4)M), NG-methyl-L-arginine (L-NMMA; 10(-4) M) and aminoguanidine (10(-4) M) had no effect or inhibited reactivity to extraluminally (EL) or intraluminally (IL) applied methacholine and histamine. L-NMMA (10(-4) M) did not appreciably contract resting or metacholine-contracted preparations (+/- 3 x 10(-4) M L-arginine) and L-arginine only weakly relaxed contracted tracheas (+/- L-NMMA). Sodium nitroprusside and S-nitroso-N-penicillamine elicited relaxant responses and were more potent extraluminally than intraluminally. Methylene blue (10(-5) M) antagonized relaxation to sodium nitroprusside. Incubation with Escherichia coli LPS (10 micrograms/ml; 30 min incubation) alone in the EL and IL baths depressed methacholine and histamine concentration-response curves. In the presence of LPS, L-NAME potentiated responses to intraluminally applied methacholine but did not affect responses to extraluminally added methacholine. Four days after i.p. injection of animals with LPS (4 mg/kg), L-NAME potentiated responses to IL methacholine, and L-arginine acquired greater relaxant activity. LPS injection increased sensitivity to intraluminally added but not extraluminally added isoproterenol. LPS given by i.p. injection or by inhalation did not affect basal specific airway resistance of conscious animals or reactivity to methacholine aerosol during a postexposure period of 6 to 72 h. NO seems to have little role in regulating reactivity of guinea pig airways to bronchoconstrictor agonists, except after in vitro or in vivo exposure to LPS. After LPS injection the in vitro changes suggestive of NO synthase induction are not associated with altered airway reactivity to inhaled methacholine.