The humoral immune response to four intracellularly located cytomegalovirus (CMV) proteins was studied in 15 lung transplant recipients experiencing active CMV infections. Five patients had primary infections, and 10 had secondary infections. Antibodies of the immunoglobulin M (IgM) and IgG classes were measured in an enzyme-linked immunosorbent assay (ELISA) system in which procaryotically expressed recombinant proteins were used as a substrate and also in a monoclonal antibody-based capture ELISA which uses naturally occurring proteins as a substrate. The proteins investigated were the lower matrix protein pp65 (ppUL83), the major DNA-binding protein p52 (ppUL44), and the two immediate early proteins IE1 and IE2 (different splicing products of UL123). Higher levels of antibodies were found to pp65 and especially to p52 than to the immediate early antigens. Antibody levels detected in the recombinant protein-based ELISAs were generally lower than antibody responses detected with the matching antigen capture ELISA. Moreover, some patients appeared to have antibodies mainly to epitopes present on naturally occurring proteins. The antibody responses detected in both assays were related to the viral load during infection as assessed by the CMV antigenemia test, which is a quantitative marker for CMV load. It was found that although epitopes on naturally occurring proteins induce higher antibody responses and responses in more patients, antibodies directed to epitopes present on the recombinant proteins were inversely related to the viral load during a CMV infection. Therefore, antibodies to epitopes on the recombinant proteins might be more clinically relevant in this group of lung transplant recipients.