Ketone bodies are produced in the liver, mainly from the oxidation of fatty acids, and are exported to peripheral tissues for use as an energy source. They are particularly important for the brain, which has no other substantial non-glucose-derived energy source. The 2 main ketone bodies are 3-hydroxybutyrate (3HB) and acetoacetate (AcAc). Biochemically, abnormalities of ketone body metabolism can present in 3 fashions: ketosis, hypoketotic hypoglycemia, and abnormalities of the 3HB/AcAc ratio. Normally, the presence of ketosis implies 2 things: that lipid energy metabolism has been activated and that the entire pathway of lipid degradation is intact. In rare patients, ketosis reflects an inability to utilize ketone bodies. Ketosis is normal during fasting, after prolonged exercise, and when a high-fat diet is consumed. During the neonatal period, infancy and pregnancy, times at which lipid energy metabolism is particularly active, ketosis develops readily. Pathologic causes of ketosis include diabetes, ketotic hypoglycemia of childhood, corticosteroid or growth hormone deficiency, intoxication with alcohol or salicylates, and several inborn errors of metabolism. The absence of ketosis in a patient with hypoglycemia is abnormal and suggests the diagnosis of either hyperinsulinism or an inborn error of fat energy metabolism. An abnormal elevation of the 3HB/AcAc ratio usually implies a non-oxidized state of the hepatocyte mitochondrial matrix resulting from hypoxia-ischemia or other causes. We summarize the differential diagnosis of abnormalities of ketone body metabolism, as well as pertinent recent advances in research.