Genetic imprinting in mammals allows the recognition and differential expression of maternal and paternal alleles of certain genes. Recent results from a number of laboratories indicate that, at least for some genes, gametic imprints, which must exist in order to mark chromosomes or genes as having been transmitted via sperm or ovum, are not by themselves sufficient to determine allele expression. Other postfertilization events are required, and these events are subject to both tissue-specific and developmental stage-specific regulation. Changes in imprinted gene methylation during preimplantation and fetal life indicate that the establishment of additional allele-specific modifications is likely to contribute to imprinted regulation. Disruptions in imprinting processes, loss of imprints, and loss of nonimprinted alleles through uniparental disomy are likely to contribute to a variety of developmental abnormalities and pathological conditions in both mice and humans.