SATB1 is a nuclear matrix attachment DNA (MAR)-binding protein which is predominantly expressed in thymocytes. This protein binds to the minor groove specifically recognizing an unusual DNA context exhibited by a specific MAR region with strong base-unpairing propensity. A phage library displaying nonamer random peptides without any built-in structure was used to identify a MAR binding motif of SATB1. One predominant cyclic peptide C1 of CRQNWGLEGC selected by a MAR-affinity column showed 50% identity with a segment in SATB1 (amino acids 355-363). Replacement of the C1 similarity segment in SATB1 by a random amino acid sequence or its truncation resulted in more than 80% reduction in MAR binding. In contrast, replacement of the same SATB1 segment with the C1 peptide restored full MAR binding activity and specificity as the wild-type protein. Single amino acid mutation of the conserved Arg or Glu residue to Ala greatly reduced MAR binding. Taken together our data show that a nine amino acid sequence in SATB1 represents a key MAR binding motif. Phage display may provide a general tool for rapid identification of DNA binding peptide motifs.