The intracellular bacterium Listeria monocytogenes can invade several types of normally non-phagocytic cells. Entry into cultured epithelial cells requires the expression of inIA, the first gene of an operon, comprising two genes: inIA, which encodes internalin, an 800-amino-acid protein, and inIB, which encodes a 630-amino-acid protein. Several genes homologous to inIA are detected in the genome of L. monocytogenes; InIB is one of them. We have assessed the role of inIB in invasiveness of L. monocytogenes by constructing isogenic chromosomal deletion mutants in the inIAB locus. Our findings indicate that: i) inIB is required for entry of L. monocytogenes into hepatocytes, but not into intestinal epithelial cells; ii) inIB encodes a surface protein; iii) internalin plays a role for entry into some hepatocyte cell lines. These results provide the first insight into the cell tropism displayed by L. monocytogenes.