The S-100: a protein family in search of a function

Prog Neurobiol. 1995 May;46(1):71-82. doi: 10.1016/0301-0082(94)00062-m.

Abstract

The S-100 is a group of low molecular weight (10-12 kD) calcium-binding proteins highly conserved among vertebrates. It is present in different tissues as dimers of homologous or different subunits (alpha, beta). In the nervous system, the S-100 exists as a mixture composed of beta beta and alpha beta dimers with the monomer beta represented more often. Its intracellular localisation is mainly restricted to the glial cytoplasmic compartment with a small fraction bound to membranes. In this compartment the S-100 acts as a potent inhibitor of phosphorylation on several substrates including the synaptosomal C-Kinase and Tau, a microtubule-associated protein. The S-100 in particular conditions, after binding with specific membrane sites (Kd = 0.2 microM; Bmax = 4.5 nM), is able to modify the activity of adenylate cyclase, probably via G-proteins. In addition, the Ca2+ homeostasis is also modulated by S-100 via an increase of specific membrane conductance and/or Ca2+ release from intracellular stores. "In vitro" and "in vivo" experiments showed that lower (nM) concentrations of extracellular S-100 beta act on glial and neuronal cells as a growth-differentiating factor. On the other hand, higher concentrations of the protein induce apoptosis of some cells such as the sympathetic-like PC12 line. Finally, data obtained from physiological (development, ageing) or pathological (dementia associated with Down's syndrome, Alzheimer's disease) conditions showed that a relationship could be established between the S-100 levels and some aspects of the statii.

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Animals
  • Calcium-Binding Proteins
  • Cells, Cultured
  • Molecular Weight
  • Phosphorylation
  • S100 Proteins / genetics
  • S100 Proteins / physiology*

Substances

  • Calcium-Binding Proteins
  • S100 Proteins