8-Cl-cAMP and 8-NH2-cAMP induced MCF-7 cell death. The type(s) of cell death were studied in more detail and compared with the cell death type (apoptosis) induced by okadaic acid, an inhibitor of serine/threonine phosphatases. By morphological criteria dying cells showed loss of cell-cell interactions and microvilli, condensation of nuclear chromatin and segregation of cytoplasmic organelles. By in situ nick end-labelling, using digoxigenin-conjugated dUTP as probe, a large fraction of 8-Cl-cAMP, 8-NH2-cAMP and 8-Cl-adenosine-exposed cells stained positively in the advanced stages of death. In the early phase of chromatin condensation the cells stained negatively. Specific (internucleosomal) DNA fragmentation was not observed. The MCF-7 cell death induced by 8-Cl-cAMP and 8-NH2-cAMP was not mediated by activation of the cAMP kinase since more stable cAMP analogues (8-CPT-cAMP and N6-benzoyl-cAMP) or forskolin failed to induce death. Furthermore, 8-Cl-cAMP action was counteracted by adenosine deaminase and 3-isobutyl-1-methylxanthine, and mimicked by 8-Cl-adenosine, a major metabolite of 8-Cl-cAMP. It is concluded that 8-Cl- and 8-NH2-cAMP can induce morphological and biochemical effects resembling apoptotic cell death in MCF-7 cells through their conversion into potent cytotoxic metabolite(s).