A general method for mapping tertiary interactions in membrane proteins using the visual pigment rhodopsin as a model is presented. In this approach, the protein is first assembled from two separately expressed gene fragments encoding nonoverlapping segments of the full-length polypeptide. Cys residues are then introduced into each of the two fragments such that juxtaposed residues are able to form disulfide cross-links in the protein either spontaneously or with the assistance of a Cu(2+)-(phenanthroline)3 oxidant. The cross-linked polypeptides are identified from a characteristic mobility shift on sodium dodecyl sulfate (SDS) gels as detected by Western blot analysis where the covalently bound heterodimer migrates with a mobility essentially identical to that of the native, full-length protein. Three different split rhodopsin mutants were prepared: one with a split in the loop connecting helices 3 and 4 (the 3/4 loop), one with a split in the 4/5 loop, and one with a split in the 5/6 loop. Each of these proteins when purified from transfected COS cells bound 11-cis-retinal, had a native absorption maximum at 500 nm, and activated transducin in a light-dependent manner. The cross-linking assay was tested with the rhodopsin mutant split in the 5/6 loop using the rho-1D4 antibody (which recognizes the carboxy terminal eight amino acids of rhodopsin) to detect the proteins on Western blots of SDS gels. Cys residues were substituted for Val-204 in the amino terminal fragment and Phe-276 in the carboxy terminal fragment of the rhodopsin mutant because Schwartz and co-workers [Elling et al.(ABSTRACT TRUNCATED AT 250 WORDS)