We determined middle cerebral artery, common carotid artery and temporal superficial artery Doppler derived flow velocities in ten subjects for 10 min after change in posture. Maximal changes were observed after about 3 min. The 10 degrees head-down tilt position increased blood velocities in the common carotid artery by 13% (SD 4)% (P < 0.001), in the middle cerebral artery by 6% (SD 3)% (P < 0.001) and in the superficial temporal artery by 70% (SD 26)% (P < 0.001). In the standing position, there was an 18% (SD 9)% (P < 0.001) decrease in the common carotid blood velocities, with 14% (SD 6)% (P < 0.001) and 53% (SD 23)% (P < 0.001) reductions in the middle cerebral and superficial temporal artery velocities, respectively. At 9 min after the changes in posture, velocities in the middle cerebral artery were at the value of supine rest, whereas the common carotid blood velocity was not completely restored and deviations in the temporal artery velocity persisted. The data would suggest that cerebral blood flow is regulated with some delay and that such regulation is partially reflected in the common artery blood flow, since changes in a branch of the external carotid artery flow velocity remained.