We demonstrate here that RNA levels of 25-hydroxy-vitamin D3-24-hydroxylase (24-(OH)ase), a key catabolic enzyme for 1,25-dihydroxyvitamin D3, are increased by a highly selective retinoid X receptor (RXR) ligand, LG100268, in mice within hours. Correspondingly, upon LG100268 treatment, kidney 24-(OH)ase enzymatic activity increases 5-10-fold. The endogenous retinoid hormones, all-trans-retinoic acid and 9-cis-retinoic acid, and the synthetic retinoic acid receptor-selective compound, TTNPB, also stimulate 24-(OH)ase. Additionally, we show that LG100268 stimulates transcription of a luciferase reporter plasmid driven by 24-(OH)ase promoter sequences in the presence of RXR in CV-1 cell cotransactivation assays. This first demonstration of a gene that is regulated in the intact animal through an RXR-mediated pathway confirms earlier hypotheses that RXR is a bona fide hormone receptor. Regulation of a key gene in the vitamin D signaling pathway by a retinoid transducer may provide a molecular basis for some of the documented biological effects of vitamin A on bone and vitamin D metabolism.