The alpha subunit of the receptor for human granulocyte-macrophage colony-stimulating factor (GM-CSF) is a glycoprotein containing 11 potential N-glycosylation sites in the extracellular domain. We examined the role of N-glycosylation on alpha subunit membrane localization and function. Tunicamycin, an N-glycosylation inhibitor, markedly inhibited GM-CSF binding, GM-CSF-induced deoxyglucose uptake, and protein tyrosine phosphorylation in HL-60(eos) cells but did not affect cell surface expression of the alpha subunit as detected by an anti-alpha subunit monoclonal antibody. In COS cells expressing the alpha subunit and treated with tunicamycin, N-unglycosylated alpha subunit was expressed and transported to the cell surface but was not capable of binding GM-CSF. High affinity binding in COS cells expressing both alpha and beta subunits was also blocked by tunicamycin treatment. These studies indicate that N-linked oligosaccharides are essential for alpha subunit ligand binding and signaling by the human GM-CSF receptor.