Experimental autoimmune encephalomyelitis (EAE) is a CD4+ T cell-mediated, inflammatory demyelinating disease of the central nervous system (CNS) that serves as a model for the human demyelinating disease, multiple sclerosis. A critical event in the pathogenesis of EAE is the entry of both Ag-specific T lymphocytes and Ag-nonspecific mononuclear cells into the CNS. In the present report we investigated the role of two C-C chemokines (macrophage inflammatory protein-1 alpha (MIP-1 alpha) and monocyte chemotactic protein-1) and a C-x-C chemokine (MIP-2) in the pathogenesis of EAE. Production in the CNS of MIP-1 alpha, but not that of MIP-2, a rodent homologue of IL-8, or monocyte chemotactic protein-1, correlated with development of severe clinical disease. Administration of anti-MIP-1 alpha, but not that of anti-monocyte chemotactic protein-1, prevented the development of both acute and relapsing paralytic disease as well as infiltration of mononuclear cells into the CNS initiated by the transfer of neuroantigen peptide-activated T cells. Ab therapy could also be used to ameliorate the severity of ongoing clinical disease. Anti-MIP-1 alpha did not affect the activation of encepahlitogenic T cells as measured by cytokine secretion, surface marker expression, and ability to adoptively transfer EAE. These results demonstrate that MIP-1 alpha plays an important role in directing the chemoattraction of mononuclear inflammatory cells in the T cell-mediated autoimmune disease, EAE.