We have studied the integration of adenovirus type 12 (Ad12) DNA in transformed and hamster tumor cells over many years. Upon infection of hamster cells with Ad12, viral DNA has been found in association with hamster chromosomes, possibly in part integrated into the host genome. Ad12 DNA integration is not sequence specific. Transcriptionally active sites of the host genome show a preponderance for foreign DNA insertion. We are pursuing the mechanism of Ad12 DNA integrative recombination in a cell-free system prepared from hamster cell nuclear extracts. In a number of Ad12-transformed hamster cell lines or in cell lines carrying foreign DNA, we have located the inserted Ad12 DNA copies on hamster chromosomes by fluorescent in situ hybridization (FISH). Among the consequences of Ad12 DNA integration, we have studied the de novo methylation of the integrated foreign (Ad12) DNA and increases in DNA methylation in several cellular genes and DNA segments in Ad12-transformed and hamster tumor cells. Several lines of evidence argue for the notion that parameters in addition to nucleotide sequence, in particular site of integration and/or the chromatin configuration of the integrated DNA, are important in generating de novo methylation patterns. The de novo methylation of integrated foreign DNA can be interpreted as an old cellular defense mechanism against the activity of foreign genes in an established genome. Pursuing this concept, we have asked for the most likely portal of entry of foreign DNA, supposedly the gastrointestinal tract in most animals. This hypothesis has been tested by feeding mice linearized or circular, double-stranded bacteriophage M13mp18 DNA.(ABSTRACT TRUNCATED AT 250 WORDS)