Mammalian reoviruses exhibit differences in the capacity to grow in intestinal tissue: reovirus type 1 Lang (T1L), but not type 3 Dearing (T3D), can be recovered in high titer from intestinal tissue of newborn mice after oral inoculation. We investigated whether in vitro protease treatment of virions of T1L and T3D, using conditions to generate infectious subvirion particles (ISVPs) as occurs in the intestinal lumen of mice (D. K. Bodkin, M. L. Nibert, and B. N. Fields, J. Virol. 63:4676-4681, 1989), affects viral infectivity. Chymotrypsin treatment of T1L was associated with a 2-fold increase in viral infectivity, whereas identical treatment of T3D resulted in a 10-fold decrease in infectivity. Using sodium dodecyl sulfate-polyacrylamide gel electrophoresis, we found that loss of T3D infectivity was correlated with cleavage of its sigma 1 protein. We used reassortant viruses to identify viral determinants of infectivity loss and sigma 1 cleavage and found that both phenotypes segregate with the sigma 1-encoding S1 gene. Comparable results were obtained when trypsin treatment of virions of T1L and T3D was used. In experiments to determine the fate of sigma 1 fragments following cleavage, the capacity of anti-sigma 1 monoclonal antibody G5 to neutralize infectivity of T3D ISVPs was significantly decreased in comparison with its capacity to neutralize infectivity of virions, suggesting that a sigma 1 domain bound by G5 is lost from viral particles after proteolytic digestion. In contrast to the decrease in infectivity, chymotrypsin treatment of T3D virions leading to generation of ISVPs resulted in a 10-fold increase in their capacity to produce hemagglutination, indicating that a domain of sigma 1 important for binding to sialic acid remains associated with viral particles after sigma 1 cleavage. Neuraminidase treatment of L cells substantially decreased the yield of T3D ISVPs in comparison with the yield of virions, indicating that a sigma 1 domain important for binding sialic acid also can mediate attachment of T3D ISVPs to L cells and lead to productive infection. These results suggest that cleavage of T3D sigma 1 protein following oral inoculation of newborn mice is at least partly responsible for the decreased growth of T3D in the intestine and provide additional evidence that T3D sigma 1 contains more than a single receptor-binding domain.