Dexamethasone modulates rat renal brush border membrane phosphate transporter mRNA and protein abundance and glycosphingolipid composition

J Clin Invest. 1995 Jul;96(1):207-16. doi: 10.1172/JCI118022.

Abstract

Glucocorticoids are important regulators of renal phosphate transport. This study investigates the role of alterations in renal brush border membrane (BBM) sodium gradient-dependent phosphate transport (Na-Pi cotransporter) mRNA and protein abundance in the dexamethasone induced inhibition of Na-Pi cotransport in the rat. Dexamethasone administration for 4 d caused a 1.5-fold increase in the Vmax of Na-Pi cotransport (1785 +/- 119 vs. 2759 +/- 375 pmol/5 s per mg BBM protein in control, P < 0.01), which was paralleled by a 2.5-fold decrease in the abundance of Na-Pi mRNA and Na-Pi protein. There was also a 1.7-fold increase in BBM glucosylceramide content (528 +/- 63 vs. 312 +/- 41 ng/mg BBM protein in control, P < 0.02). To determine whether the alteration in glucosylceramide content per se played a functional role in the decrease in Na-Pi cotransport, control rats were treated with the glucosylceramide synthase inhibitor, D-threo-1-phenyl-2-decanoyl-amino-3-morpholino-1-propanol (PDMP). The resultant 1.5-fold decrease in BBM glucosylceramide content (199 +/- 19 vs. 312 +/- 41 ng/mg BBM protein in control, P < 0.02) was associated with a 1.4-fold increase in Na-Pi cotransport activity (1422 +/- 73 vs. 1048 +/- 85 pmol/5 s per mg BBM protein in control, P < 0.01), and a 1.5-fold increase in BBM Na-Pi protein abundance. Thus, dexamethasone-induced inhibition of Na-Pi cotransport is associated with a decrease in BBM Na-Pi cotransporter abundance, and an increase in glucosylceramide. Since primary alteration in BBM glucosylceramide content per se directly and selectively modulates BBM Na-Pi cotransport activity and Na-Pi protein abundance, we propose that the increase in BBM glucosylceramide content plays an important role in mediating the inhibitory effect of dexamethasone on Na-Pi cotransport activity.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Carrier Proteins / analysis
  • Carrier Proteins / genetics*
  • Dexamethasone / pharmacology*
  • Glycosphingolipids / analysis*
  • Kidney / chemistry
  • Kidney / drug effects*
  • Kidney / metabolism
  • Male
  • Membrane Fluidity / drug effects
  • Microvilli / drug effects
  • Microvilli / metabolism
  • Phosphate-Binding Proteins
  • Phosphates / metabolism
  • RNA, Messenger / analysis*
  • Rats
  • Rats, Sprague-Dawley
  • Sodium / metabolism

Substances

  • Carrier Proteins
  • Glycosphingolipids
  • Phosphate-Binding Proteins
  • Phosphates
  • RNA, Messenger
  • Dexamethasone
  • Sodium