Fission yeast nuc2+ gene encodes a protein of a tetratricopeptide repeat (TPR) family which is conserved throughout evolution. We previously showed that nuc2 is required for exit from the mitotic metaphase. In this study, we present evidence which shows that nuc2 has two additional roles in the cell cycle. We showed that the nuc2 mutant is sterile even at the permissive temperature and septation occurs in the absence of chromosome separation at the restrictive temperature. The nuc2 mutant fails to arrest at the G1 phase upon nitrogen starvation at the permissive temperature which is a prerequisite for conjugation. Upon starvation, however, the nuc2 mutant ceased division normally and induced starvation-dependent gene expression. Therefore, the nuc2 mutant is deficient only for failure to block DNA replication upon starvation. At the lower restrictive temperature, the nuc2 mutant showed a 'cut' phenotype where septation and cytokinesis takes place without the completion of mitosis. Ectopic overexpression of the nuc2+ gene caused multiple rounds of S and M phases in the complete absence of septum formation. We propose that nuc2 is a novel cell cycle regulator essential for three events; firstly for exit from mitosis, secondly for DNA replication restraint under nutrient starvation and thirdly for inhibition of septation and cytokinesis until the completion of mitosis.