Cinnamic acid, a naturally occurring aromatic fatty acid of low toxicity, has a long history of human exposure. We now show that cinnamic acid induces cytostasis and a reversal of malignant properties of human tumor cells in vitro. The concentration causing a 50% reduction of cell proliferation (IC50) ranged from 1 to 4.5 mM in glioblastoma, melanoma, prostate and lung carcinoma cells. Using melanoma cells as a model, we found that cinnamic acid induces cell differentiation as evidenced by morphological changes and increased melanin production. Moreover, treated cells had reduced invasive capacity associated with modulation of expression of genes implicated in tumor metastasis (collagenase type IV, and tissue inhibitor metalloproteinase 2) and immunogenicity (HLA-A3, class-I major histocompatibility antigen). Further molecular analysis indicated that the anti-tumor activity of cinnamic acid may be due in part to the inhibition of protein isoprenylation known to block mitogenic signal transduction. The results presented here identify cinnamic acid as a new member of the aromatic fatty acid class of differentiation-inducers with potential use in cancer intervention.