The molecular mechanism underlying the cAMP inhibition of nuclear activation events in T lymphocytes is unknown. Recently, the activation of fibroblasts and muscle cells are shown to be antagonized by cAMP through the inhibition of mitogen-activated protein (MAP) kinases signaling pathway. Whether a similar antagonism may account for the late inhibitory effect of cAMP in T cell was examined. Surprisingly, extracellular signal regulated kinase 2 (ERK1, ERK2, and ERK3) of MAP kinase were poorly inhibited by cAMP. High concentration of cAMP also only weakly antagonized Raf-1 in T cells. The resistance of ERK and Raf-1 to cAMP clearly distinguishes T cells from fibroblasts. In contrast, another MAP kinase homologue c-Jun N-terminal kinase (JNK) was inhibited by cAMP in good correlation with that of IL-2 suppression. Moreover, JNK was antagonized by a delayed kinetics which is characteristic of cAMP inhibition. Despite that both ERK and JNK are essential for T cell activation, selective inhibition by cAMP further supports the specific role of JNK in T cell activation.