Comparison of the specificity of bacterially expressed cytoplasmic protein-tyrosine phosphatases SHP and SH-PTP2 towards synthetic phosphopeptide substrates

Eur J Biochem. 1995 Aug 1;231(3):673-81. doi: 10.1111/j.1432-1033.1995.0673d.x.

Abstract

SHP and SH-PTP2 are related cytoplasmic protein-tyrosine phosphatases having two tandem amino-terminal src homology 2 domains linked to a single catalytic domain. There is growing evidence that these two molecules may exhibit opposing effects within specific signaling pathways. However, the relative contributions of the src homology 2 domains or the catalytic domains to these opposing effects are not well known. To evaluate the potential contribution of the catalytic domains, we compared the substrate specificity of the two phosphatases. As seen previously, the catalytic activities of bacterially expressed SHP and SH-PTP2 were regulated by the presence of the linked src homology 2 domains. In addition, we characterized a cryptic thrombin cleavage site within the carboxy-terminus of SHP that led to a striking increase in the activity of the catalytic domain. Employing a panel of phosphopeptide substrates whose sequences were modeled after intracellular phosphorylation sites, both SHP and SH-PTP2 demonstrated a similar specificity pattern. Similar to SH-PTP2, SHP failed to elicit detectable phosphate release from several phosphopeptide substrates, while displaying catalytic efficiencies that ranged over approximately 40-1.6 x 10(3) M-1 s-1 towards other substrates. In contrast, the PTP-1B phosphatase dephosphorylated all of the phosphopeptide substrates tested with approximately equal ease. The overall similarity demonstrated by the catalytic domains of SHP and SH-PTP2 suggested that differences in the in vivo behavior of these two molecules might not stem from differences in the substrate specificity of the catalytic domains, suggesting instead that the specificity of the src homology 2 domains is more important in this regard.

Publication types

  • Comparative Study
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Amino Acid Sequence
  • Animals
  • Cattle
  • Escherichia coli / genetics
  • Hydrogen-Ion Concentration
  • Hydrolysis
  • Intracellular Signaling Peptides and Proteins
  • Molecular Sequence Data
  • Phosphopeptides / metabolism*
  • Protein Tyrosine Phosphatase, Non-Receptor Type 11
  • Protein Tyrosine Phosphatase, Non-Receptor Type 6
  • Protein Tyrosine Phosphatases / genetics
  • Protein Tyrosine Phosphatases / metabolism*
  • Recombinant Proteins / genetics
  • Recombinant Proteins / metabolism
  • Salts
  • Sequence Deletion
  • Sequence Homology, Amino Acid
  • Substrate Specificity
  • Thrombin / metabolism

Substances

  • Intracellular Signaling Peptides and Proteins
  • Phosphopeptides
  • Recombinant Proteins
  • Salts
  • Protein Tyrosine Phosphatase, Non-Receptor Type 11
  • Protein Tyrosine Phosphatase, Non-Receptor Type 6
  • Protein Tyrosine Phosphatases
  • Thrombin