A ryanodine receptor-like molecule expressed in the osteoclast plasma membrane functions in extracellular Ca2+ sensing

J Clin Invest. 1995 Sep;96(3):1582-90. doi: 10.1172/JCI118197.

Abstract

Ryanodine receptors (RyRs) reside in microsomal membranes where they gate Ca2+ release in response to changes in the cytosolic Ca2+ concentration. In the osteoclast, a divalent cation sensor, the Ca2+ receptor (CaR), located within the cell's plasma membrane, monitors changes in the extracellular Ca2+ concentration. Here we show that a RyR-like molecule is a functional component of this receptor. We have demonstrated that [3H] ryanodine specifically binds to freshly isolated rat osteoclasts. The binding was displaced by ryanodine itself, the CaR agonist Ni2+ and the RyR antagonist ruthenium red. The latter also inhibited cytosolic Ca2+ elevations induced by Ni2+. In contrast, the responses to Ni2+ were strongly potentiated by an antiserum Ab129 raised to an epitope located within the channel-forming domain of the type II RyR. The antiserum also stained the surface of intact, unfixed, trypan blue-negative osteoclasts. Serial confocal sections and immunogold scanning electron microscopy confirmed a plasma membrane localization of this staining. Antiserum Ab34 directed to a putatively intracellular RyR epitope expectedly did not stain live osteoclasts nor did it potentiate CaR activation. It did, however, stain fixed, permeabilized cells in a distinctive cytoplasmic pattern. We conclude that an RyR-like molecule resides within the osteoclast plasma membrane and plays in important role in extracellular Ca2+ sensing.

Publication types

  • Comparative Study
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Animals, Newborn
  • Autoradiography
  • Calcium / metabolism*
  • Calcium Channels / analysis
  • Calcium Channels / biosynthesis*
  • Cell Membrane / metabolism
  • Cells, Cultured
  • Cytosol / metabolism
  • Fluorescent Antibody Technique
  • Gene Expression*
  • Mammals
  • Microscopy, Confocal
  • Muscle Proteins / analysis
  • Muscle Proteins / biosynthesis*
  • Osteoclasts / cytology
  • Osteoclasts / metabolism*
  • Rats
  • Rats, Wistar
  • Ryanodine / metabolism*
  • Ryanodine Receptor Calcium Release Channel
  • Tritium

Substances

  • Calcium Channels
  • Muscle Proteins
  • Ryanodine Receptor Calcium Release Channel
  • Tritium
  • Ryanodine
  • Calcium