Joint moments and bone-on-bone forces in the ankle, knee and hip joint were studied in 7 healthy male subjects during unloaded and loaded walking. The subjects walked across a force platform while they were filmed at 200 Hz. Loaded walking was examined at 10 and 20 kg load carried symmetrically in the hands. Peak joint moments and peak bone-on-bone forces increased from unloaded to loaded walking for the ankle and hip joint (p < 0.05). The lowest bone-on-bone forces were found at the ankle joint (3,318 +/- 390 N) during unloaded walking and the highest at the hip joint (6,399 +/- 1,517 N) during 20 kg loading. Expressed relative to body weight (BW) these values corresponded to 4.2 +/- 0.50 and 8.0 +/- 1.78 BW). However, the individual values showed that 2 of the 7 subjects differed remarkably from the other 5, especially with respect to the hip joint loadings. During loaded walking (20 kg) these 2 subjects showed 14.4 and 15.1 BW peak compression force in the hip joint while the remaining subjects were all below 6.3 BW, which could be explained by the 2 subjects' low ankle joint moments and higher knee and hip joint moments. Apparently, a total 'leg moment' formed by the three major joints is required to support the body and maintain the locomotion, although the relative contribution from each joint can differ among individuals. The peak joint moments were the most dominant contributor to the peak bone-on-bone forces. Therefore, it is concluded that interindividual differences in walking style can lead to pronounced differences in peak bone-on-bone forces. It remains unclear how these interindividual differences are related to joint degradation.