The possible control by monoamines of the spinal release of substance P- and calcitonin gene-related peptide-like materials (SPLM and CGRPLM, respectively) was investigated in vitro, using slices of the dorsal half of the rat lumbar enlargement superfused with an artificial cerebrospinal fluid. Whereas the spontaneous outflow of SPLM and CGRPLM was changed by none of the agonists/antagonists of monoamine receptors tested, the overflow of both peptide-like materials due to 30 mM K+ was differentially affected by alpha 2-adrenoreceptor and dopamine D-1 receptor ligands. Noradrenaline (10 microM to 0.1 mM) and clonidine (0.1 mM) significantly reduced the K(+)-evoked overflow of SPLM, and both effects could be prevented by idazoxan (10 microM) and prazosin (10 microM) as expected from their mediation through the stimulation of alpha 2B-adrenoreceptors. In contrast, CGRPLM overflow remained unaffected by alpha 2-adrenoreceptor ligands. Dopamine D-1 receptor stimulation by SKF 82958 (10-100 nM) significantly increased the K(+)-evoked overflow of both SPLM and CGRPLM, and this effect could be prevented by the selective D-1 antagonist SCH 39166 (1 microM). Further studies with selective ligands of other monoamine receptors indicated that neither alpha 1- and beta-adrenergic receptors, dopamine D-2, nor serotonin 5-HT1A and 5-HT3 receptors are apparently involved in some control of the spinal release of CGRPLM and SPLM. These data are discussed in line with the postulated presynaptic control by monoamines of primary afferent fibres conveying nociceptive messages within the dorsal horn of the spinal cord.