A new adenovirus-based vector (Ad2/CFTR-1) has been constructed in which the cDNA encoding the cystic fibrosis transmembrane conductance regulator (CFTR), the cystic fibrosis (CF) gene product, replaces the early region 1 coding sequences, E1a and E1b. The virus retains the E3 region. Ad2/CFTR-1 and a related construct encoding beta-galactosidase replicate in human 293 cells which provide E1 gene functions in trans. Replication of these recombinant viruses was not detected in a variety of other cells, although very limited viral DNA synthesis and transcription from the E4 and L5 regions could be measured. These E1-deletion vectors were also deficient in cellular transformation, shut-off of host cell protein synthesis, and production of cytopathic effects, even at high multiplicities of infection. Ad2/CFTR-1 produced CFTR protein in a variety of cells including airway epithelia from CF patients. Expression of functional CFTR protein in a CF airway epithelial monolayer was detected by correction of the Cl- transport defect characteristic of CF. Surprisingly low multiplicities of infection (0.1 moi) were sufficient to generate CFTR Cl- current across a CF epithelial monolayer in vitro. These data, together with the lack of obvious toxicity, suggest that Ad2/CFTR-1 should be suitable for CF gene therapy.