The crystal structure of an inhibitory complex formed between Escherichia coli cytidine deaminase and the transition-state analog 3,4-dihydrouridine indicates the presence of a short H-bond between Glu-104 and the inhibitor. To test the possibility that analogous H-bonds might play a significant role in stabilizing the hydrated substrate in the transition state for deamination, we replaced Glu-104 by alanine. Compared with the wild-type enzyme, the mutant enzyme's affinities for substrate cytidine and product uridine were found to have increased, whereas kcat for deamination of cytidine had been reduced by 8 orders of magnitude. By its presence, the carboxymethyl group of Glu-104 appears to minimize the activation barrier for deamination, not only by stabilizing the altered substrate in the transition state but also by destabilizing the enzyme-substrate and enzyme-product complexes. In the presence of added formate ion, but not in the presence of bulkier carboxylic acids, the low catalytic activity of the mutant enzyme was enhanced substantially.