Neuronal nicotinic acetylcholine receptor subunits alpha 3 (PCA48E) and beta 4S (ZPC13) were expressed in human embryonic kidney (HEK)-293 cells by calcium phosphate transfection. In the presence of atropine, acetylcholine (ACh) induced fast activating currents which exhibited desensitization and inward rectification. The EC50 for ACh was 202 +/- 32 microM with a Hill coefficient of 1.9 +/- 0.4. The rank order of nicotinic agonist potency was 1,1-dimethyl-4-phenylpiperozinium (DMPP) > cytisine = nicotine approximately equal to ACh. The maximal response elicited by DMPP was substantially less than that elicited by other agonists, suggesting that DMPP is a partial agonist. ACh (500 microM) responses were very effectively blocked by equimolar concentrations (100 microM) of the ganglionic antagonists d-tubocurarine, mecamylamine and hexamethonium. Equal concentrations of the potent muscle receptor antagonist decamethonium and the competitive antagonist dihydro-beta-erythroidine were much less effective. alpha bungaro-toxin (1 microM) had little effect on ACh-induced responses. This physiological and pharmacological profile is consistent with a ganglionic nicotinic response.