Nuclear magnetic resonance (NMR) and circular dichroism (CD) spectroscopy have been used to characterize the conformation of the putative cytoplasmic domain of phospholamban (PLB), an oligomeric membrane-bound protein which regulates the activity of the cardiac sarcoplasmic reticulum Ca(2+)-dependent ATPase. In aqueous solution the 25-residue peptide adopts a number of rapidly interconverting conformers with no secondary structural type obviously predominating. However, in trifluoroethanol (TFE) the conformation, while still highly dynamic, is characterized by a high proportion of helical structures. Evidence for this is provided by alpha CH chemical shifts and low NH chemical shift temperature coefficients, small NH-alpha CH intraresidue scalar coupling constants, a substantial number of distinctive interresidue nuclear Overhauser effects (NOEs) [dNN(i, i + 1), d alpha N(i, i + 3), d alpha beta(i, i + 3) and d alpha N(i, i + 4)] and characteristic CD bands at 190 (positive), 206 (negative) and 222 nm (negative). The helicity is interrupted around Pro-21. The activity of PLB is regulated by phosphorylation at either Ser-16 or Thr-17. CD shows that phosphorylation at Ser-16 by the cAMP-activated protein kinase causes about an 11% decrease in alpha-helical content in TFE.