Induction of rat liver drug-metabolizing enzymes by tetrachloroethylene

Arch Environ Contam Toxicol. 1995 Apr;28(3):273-80. doi: 10.1007/BF00213102.

Abstract

The effect of tetrachloroethylene on Phase I and II drug-metabolizing enzymes in rat liver was examined. Rats were treated orally with tetrachloroethylene daily for five days, at doses of 125, 250, 500, 1,000 and 2,000 mg/kg. The higher doses (> 500 mg/kg) of tetrachloroethylene induced the hepatic microsomal 7-pentoxyresorufin O-depentylase and 7-benzyloxyresorufin O-debenzylase activities associated with the CYP2B subfamily. 7-ethoxyresorufin O-deethylase activity was also induced about 2-fold compared with that of control rats at 500, 1,000, and 2,000 mg/kg dose levels of tetrachloroethylene. However, 7-ethoxycoumarin O-deethylase and 7-methoxyresorufin O-demethylase activities were increased significantly at only the 1,000 mg/kg dose level of tetrachloroethylene (1.4- and 1.5-fold). Although other cytochrome P450-mediated monooxygenase activities such as nitrosodimethylamine N-demethylase, aminopyrine N-demethylase and erythromycin N-demethylase were also induced by tetrachloroethylene, the relative induction to control activity was lower than those of 7-pentoxyresorufin O-depentylase and 7-benzyloxyresorufin O-debenzylase. Western immunoblotting showed that the levels of CYP2B1 and CYP2B2 proteins in liver microsomes were increased at doses of 1,000 and 2,000 mg/kg of tetrachloroethylene. In addition to cytochrome P450-mediated monooxygenases, there was significant induction of the Phase II drug-metabolizing enzymes, DT-diaphorase, glutathione S-transferase activities towards 1-chloro-2,4-dinitrobenzene and 1,2-dichloro-4-nitrobenzene, and UDP-glucuronyltransferase activities towards 4-nitrophenol and 7-hydroxycoumarin. The results indicate that tetrachloroethylene induces both Phase I (CYP2B-mediated monooxygenase) and Phase II drug-metabolizing enzymes (DT-diaphorase, glutathione S-transferase and UDP-glucuronyltransferase) in the rat liver.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Administration, Oral
  • Animals
  • Aryl Hydrocarbon Hydroxylases*
  • Blotting, Western
  • Cytochrome P-450 Enzyme System / metabolism*
  • Dose-Response Relationship, Drug
  • Enzyme Induction / drug effects
  • Liver / drug effects*
  • Liver / enzymology
  • Male
  • Rats
  • Rats, Wistar
  • Steroid Hydroxylases / metabolism*
  • Tetrachloroethylene / administration & dosage
  • Tetrachloroethylene / toxicity*

Substances

  • Cytochrome P-450 Enzyme System
  • Steroid Hydroxylases
  • Aryl Hydrocarbon Hydroxylases
  • steroid 16-beta-hydroxylase
  • Tetrachloroethylene