The role of NF-kappa B-dependent signals in activating the transcriptional activity of the HIV regulatory region (LTR) was analyzed by systematic comparison of HIV LTR activity in human CD4 T cells purified from peripheral blood and a transformed lymphoblastoid T cell line. In normal CD4 T cells we also analyzed the role played by the viral kappa B responsive elements in HIV replication. Analysis of nuclear extracts of resting, normal T lymphocytes revealed the presence of the p50, but not the p65, NF-kappa B subunit and the induction by phorbol esters of bona fide (p50-p65) NF-kappa B complexes. In parallel, we observed clear enhancer-dependent HIV LTR transactivation comparable in intensity with that observed in lymphoblastoid cells. We show that unstimulated CD4 T lymphocytes offer a cellular environment of very low permissivity to HIV LTR functioning. This was in sharp contrast to the high spontaneous LTR activity observed in lymphoblastoid T cells, where LTR activity was essentially independent of kappa B-responsive elements. Due to the low basal LTR activity in resting T lymphocytes, NF-kappa B-dependent transactivation was a sine qua non event for induction of the HIV LTR. Surprisingly, even the function of HIV Tat in resting CD4 T lymphocytes was found to be absolutely dependent on LTR kappa B responsive elements. The relevance of these observations obtained in transient transfections was confirmed by the incapacity of blood CD4 T lymphocytes infected with an HIV infectious provirus carrying critical point mutations in the kappa B responsive elements to show any detectable transcriptional activity upon cell activation and prolonged culture in vitro.(ABSTRACT TRUNCATED AT 250 WORDS)