Alveolar macrophages form the first line of defense against inhaled droplets containing Mycobacterium tuberculosis by controlling mycobacterial growth and regulating T cell responses. CD4+ and gamma delta T cells, two major T cell subsets activated by M. tuberculosis, require accessory cells for activation. However, the ability of alveolar macrophages to function as accessory cells for T cell activation remains controversial. We sought to determine the ability of alveolar macrophages to serve as accessory cells for resting (HLA-DR-, IL-2R-) and activated (HLA-DR+, IL-2R+) gamma delta T cells in response to M. tuberculosis and its Ag, and to compare accessory cell function for gamma delta T cells of alveolar macrophages and blood monocytes obtained from the same donor. Alveolar macrophages were found to serve as accessory cells for both resting and activated gamma delta T cells in response to M. tuberculosis Ag. At high alveolar macrophage to T cell ratios (> 3:1), however, expansion of resting gamma delta T cells was inhibited by alveolar macrophages. The inhibition of resting gamma delta T cells by alveolar macrophages was dose-dependent, required their presence during the first 24 h, and was partially overcome by IL-2. Alveolar macrophages did not inhibit activated gamma delta T cells even at high accessory cell to T cell ratios, and alveolar macrophages functioned as well as monocytes as accessory cells. Monocytes were not inhibitory for either resting or activated gamma delta T cells. These findings support the following model. In the normal alveolus the alveolar macrophage to T cell ratio is > or = 9:1, and therefore the threshold for resting gamma delta T cell activation is likely to be high. Once a nonspecific inflammatory response occurs, such as after invasion by M. tuberculosis, this ratio is altered, favoring gamma delta T cell activation by alveolar macrophages.