1. Inhibitors of neutral endopeptidase (NEP) EC 3.4.24.11 were developed to regulate endogenous levels of the natriuretic and vasodilatory hormone atrial natriuretic peptide (ANP). The selective NEP inhibitor SQ 28603 enhanced the increases in plasma ANP and urinary excretion of ANP, cyclic GMP and sodium stimulated by infusion of human ANP in conscious monkeys. SQ 28603 also potentiated the renal and depressor responses to rat brain natriuretic peptide (BNP) in conscious spontaneously hypertensive rats (SHR) and human BNP in conscious monkeys. Therefore, selective NEP inhibitors protected both natriuretic peptides from degradation in vivo and enhanced their biological activities. 2. Selective NEP inhibitors lowered blood pressure in conscious DOCA/salt hypertensive rats and SHR with antihypertensive activity similar to that of exogenous ANP. Furthermore, simultaneous treatment with an angiotensin converting enzyme (ACE) inhibitor enhanced the depressor activity of the NEP inhibitor in SHR. 3. SQ 28603 stimulated urinary excretion of cyclic GMP and sodium in a dose-related manner in conscious dogs with tachycardia-induced heart failure. Addition of the ACE inhibitor captopril significantly reduced blood pressure and systemic vascular resistance while sustaining sodium excretion and increasing cardiac output, glomerular filtration rate and renal blood flow. Therefore, combined NEP and ACE inhibition produced a unique haemodynamic and renal profile in dogs with pacing-induced heart failure. 4. The novel dual metalloprotease inhibitor BMS-182657 potentiated the renal responses to exogenous ANP and suppressed the pressor response to angiotensin I in conscious monkeys, indicating in vivo inhibition of both NEP and ACE.(ABSTRACT TRUNCATED AT 250 WORDS)