Using a rat lung model, we sought to characterize the time course for ischemia-reperfusion injury and the role of neutrophils in the development of injury. Adult male Long-Evans rats underwent left thoracotomy with dissection and clamping of the left pulmonary artery, bronchus, and vein for 90 min, resulting in complete left lung ischemia. The lungs were then ventilated and reperfused for up to 4 hr. Time-matched sham animals underwent the identical thoracotomy and hilar dissection, but the lungs were not rendered ischemic. Using vascular permeability of 125I-labeled bovine serum albumin as a measure of reperfusion injury, a bimodal pattern of injury was observed. Compared to sham controls, animals undergoing ischemia-reperfusion demonstrated a significant early phase of lung injury at 30 min of reperfusion (P < 0.0001), followed by partial recovery. A second peak of lung injury was noted after 4 hr of reperfusion (P < 0.001). Myeloperoxidase activity in reperfused lung tissue, a measure of neutrophil sequestration, increased during the reperfusion time course. To determine the role of neutrophils in the development of lung reperfusion injury, additional animals undergoing the identical ischemia-reperfusion protocol received either rabbit anti-rat neutrophil serum or preimmune serum the day prior to operation. Profound neutropenia (< 75/mm3 blood) was confirmed by differential leukocyte counts. Neutropenia had no protective effect against microvascular permeability at 30 min of reperfusion, but there was a significant reduction in lung injury at 4 hr (P < 0.005). We conclude that, during lung ischemia-reperfusion, there is a bimodal pattern of injury, consisting of both neutrophil-independent and neutrophil-mediated events.