RelA (p65) is one of the strongest activators of the Rel/NF-kappa B family. As a first step to elucidate the mechanisms that regulate its activity in vivo, we have generated transgenic mice overexpressing RelA in the thymus. Although the levels of RelA were significantly increased in thymocytes of transgenic mice, the overall NF-kappa B-binding activity in unstimulated cells was not augmented compared with that in control thymocytes. This could be explained by the dramatic increase of endogenous I kappa B alpha levels observed in RelA-overexpressing cells in both cytoplasmic and nuclear compartments. The ikba mRNA levels were not augmented by overexpressed RelA, but I kappa B alpha inhibitor was found to be stabilized through association with RelA. Although a fraction of RelA was associated with cytoplasmic p105, no changes in the precursor levels were observed. Upon stimulation of RelA-overexpressing thymocytes with phorbol 12-myristate 13-acetate and lectin (phytohemaglutinin), different kappa B-binding complexes, including RelA homodimers, were partially released from I kappa B alpha. Association of RelA with I kappa B alpha prevented complete degradation of the inhibitor. No effect of phorbol 12-myristate 13-acetate-lectin treatment was detected on RelA associated with p105. Our data indicate that cytoplasmic retention of overexpressed RelA by I kappa B alpha is the major in vivo mechanism controlling the potential excess of NF-kappa B activity in long-term RelA-overexpressing thymocytes.