Molecular characterization of type I GABAA receptor complex from rat cerebral cortex and hippocampus

Brain Res Mol Brain Res. 1994 Sep;25(3-4):225-33. doi: 10.1016/0169-328x(94)90157-0.

Abstract

The molecular composition of the native gamma-aminobutyric acidA (GABAA) receptor complex is actually unknown. In the present communication we report a novel approach to characterize the minimal molecular conformation of the native GABAA receptor complex. This novel approach is based on the combination of subunit specific antibodies and specific 3H-labeled ligands in immunoprecipitation experiments. We have determined the presence of beta 2/3 and gamma 2 subunits in the Type I GABAA receptor complex, from rat cerebral cortex and hippocampus, by using two antibodies, the monoclonal 62-3G1 (specific for beta 2/3) and the polyclonal anti-gamma 2 (to the large intracellular loop of the gamma 2 short form) together with the Type I-specific ligand [3H]zolpidem. The association of gamma 2 and beta 2/3 subunits with the GABAA receptor complex was also tested using [3H]flumazenil. The results indicated that both gamma 2 and beta 2/3 were the most abundant subunits associated to either Type I or total benzodiazepine receptors from both cortex and hippocampus. Between 70-80% of Type I or total benzodiazepine binding activity was immunoprecipitated by either antibody. In addition, we have also investigated the coexistence of both subunits as part of the same population of Type I GABAA receptor complex by cross-immunoprecipitation experiments with 62-3G1 and anti-gamma 2. The results indicated that, in cerebral cortex, both gamma 2 and beta 2/3 subunits were part of the same population of Type I receptors. In hippocampus, an additional 20% of Type I receptors displayed either gamma 2 or beta 2/3 but not both subunits.(ABSTRACT TRUNCATED AT 250 WORDS)

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Antibodies, Monoclonal
  • Cerebral Cortex / chemistry*
  • Hippocampus / chemistry*
  • Membranes / metabolism
  • Precipitin Tests
  • Radioligand Assay
  • Rats
  • Rats, Wistar
  • Receptors, GABA-A / chemistry*
  • Solubility

Substances

  • Antibodies, Monoclonal
  • Receptors, GABA-A