Disrupting bacterial biofilms is necessary for a wide application domains such as reusable medical devices, or systems of pipes for water or fluids in cosmetics, food and chemicals industry. Bacterial cells embedded in a biofilm are less susceptible to disinfectants than suspended cells. This property is referable to the structure of the biofilm itself. The gangue of exopolymers and the thickness of a 5-day-old biofilm of Escherichia coli (more than 200 layers of bacteria), contribute to this decrease of susceptibility. The present work deals with the release of an Escherichia coli biofilm by the sequential action of enzymes and a phenolic disinfectant on the one hand, and by the sequential or simultaneous action of surfactants and the previous disinfectant on the other hand. The decrease of bacteria count per mm2 and the Scanning Electron Microscope observations exhibited a synergic action in every case. Nevertheless, Escherichia coli biofilms quickly reconstructed even after exposition to the previous treatment.