Ferritin is an iron-storage protein ubiquitous in mammals, plants and bacteria. It can be reconstituted, in vitro, from the apoprotein and Fe(II) salts in the presence of dissolved oxygen. Recently it has been reported that caeruloplasmin can facilitate apoferritin reconstitution and that iron oxidized by caeruloplasmin is sequestered within the ferritin shell. Here we show that the primary effect of adding caeruloplasmin to horse spleen ferritin during reconstitution is the competition between the two molecules for the iron. This competition results in overall increased rates of iron oxidation and a mixture of products, namely iron-containing ferritin and iron hydroxy polymers attached to caeruloplasmin. Iron oxidized by caeruloplasmin is not incorporated, to any significant extent, into horse spleen ferritin.