Bradykinin B2 receptors and coupling mechanisms in the smooth muscle of the guinea-pig taenia caeci

Br J Pharmacol. 1994 Oct;113(2):607-13. doi: 10.1111/j.1476-5381.1994.tb17033.x.

Abstract

1. In the smooth muscle of the guinea-pig taenia caeci, bradykinin produces a relaxation followed by a contraction. In the presence of hexamethonium and guanethidine, both these phases of the response were insensitive to tetrodotoxin (100 nM), omega-conotoxin GVIA (100 nM) and ibuprofen (1 microM), suggesting that they are due to a direct action on the smooth muscle. 2. The B1 receptor-selective agonist, [des-Arg9]-BK (1-100 microM), was inactive in the taenia caeci, and the B1 receptor-selective antagonist, [Leu8,des-Arg9]-BK (1-10 microM), did not inhibit either phase of the bradykinin-induced response. The B2 receptor-selective antagonist, D-Arg-[Hyp3,Thi5,D-Tic7,Oic8]-BK (Hoe 140) (30-300 nM), inhibited both the bradykinin-induced relaxation and contraction with a similar affinity (apparent pKB estimates of 8.5 +/- 0.1 and 8.4 +/- 0.1 respectively). 3. In a depolarizing high-K(+)-solution, bradykinin produced concentration-related contractions, though of diminished magnitude; but no relaxation was observed in such media. In Krebs solution, the Ca(2+)-activated K(+)-channel blocker, apamin (10 nM), abolished relaxant responses. These observations suggest that contraction results both from membrane potential-dependent, and membrane potential-independent, mechanisms; whereas relaxant responses result entirely from membrane potential-dependent mechanisms. Contractile responses obtained in the high K(+)-solution were inhibited by D-Arg-[Hyp3,Thi5,D-Tic7,Oic8]-BK with an apparent pKB value of 8.4 +/- 0.1. 4. In a Ca(2+)-free, EGTA-containing medium, relatively high concentrations of bradykinin (> 100 nM) produced transient contractions, suggesting that a component of the contractile response results from release of Ca2+ from an intracellular store. This intracellular Ca2+ store could be refilled in the presence of extracellular Ca2+. The B, receptor antagonist, [Leu8,des-Argj-BK (10 micro M), did not inhibit this bradykinin-induced contraction, whereas the B2 receptor antagonist, D-Arg-[Hyp3,Thi5,D-Tic7,Oic8]-BK(100 nM) markedly attenuated it (P<0.001; n = 6).5. Bradykinin (10 nM- 100 micro M) significantly elevated tissue levels of total [3H]-inositol phosphates in the presence of Li?, after incubation with myo-[3H]-inositol. The B, receptor-selective agonist, [des-Argl-BK(100IM) did not stimulate [3H]-inositol phosphate formation, and the B, receptor-selective antagonist,[Leu8,des-Argl-BK, did not inhibit the formation of [3H]-inositol phosphates in response to a submaximal concentration of bradykinin (1I0 1M; P> 0.05). Two B2 receptor antagonists, D-Arg-[Hyp3,DPhe7]-BK and D-Arg-[Hyp3,Thi5,D-Tic7,Oic8]-BK, inhibited bradykinin-induced accumulation of total[3H]-inositol phosphates with apparent pKB estimates of 5.4 +/0 0.3 and 8.4 +/- 0.1, respectively.6. These data suggest that in the guinea-pig taenia caeci, the five aspects of the action of bradykinin studied (the relaxant and the contractile elements of the biphasic mechanical response, the contractile response in a depolarizing high-K' solution medium and zero-Ca2+ media, and stimulation of phosphatidylinositol turnover), all result from activation of B2 receptors. A possible causal relationship is suggested between these B2 receptor-mediated membrane potential-dependent, and -independent events,and their roles in excitation contraction coupling.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Amino Acid Sequence
  • Animals
  • Bradykinin / analogs & derivatives
  • Bradykinin / antagonists & inhibitors
  • Bradykinin / pharmacology
  • Bradykinin Receptor Antagonists
  • Calcium / physiology
  • Cecum / drug effects
  • Cecum / metabolism
  • Culture Media
  • Guinea Pigs
  • Hydrolysis
  • In Vitro Techniques
  • Male
  • Molecular Sequence Data
  • Muscle Contraction / drug effects
  • Muscle Relaxation / drug effects
  • Muscle, Smooth / drug effects*
  • Muscle, Smooth / metabolism
  • Phosphatidylinositols / metabolism
  • Potassium / pharmacology
  • Receptors, Bradykinin / agonists
  • Receptors, Bradykinin / drug effects*
  • Sodium / metabolism

Substances

  • Bradykinin Receptor Antagonists
  • Culture Media
  • Phosphatidylinositols
  • Receptors, Bradykinin
  • HOE k86-4321
  • bradykinin, Leu(8)-des-Arg(9)-
  • Sodium
  • Potassium
  • Bradykinin
  • Calcium