The present study examined the relationship between total skeletal muscle GLUT-4 protein level and glucose uptake during exercise. Eight active non-endurance-trained men cycled at 72 +/- 1% peak pulmonary oxygen consumption for 40 min, with rates of glucose appearance and disappearance (Rd) determined by utilizing a primed continuous infusion of [3-3H]glucose commencing 2 h before exercise. Muscle glycogen content and utilization, citrate synthase activity, and total GLUT-4 protein were measured on muscle biopsy samples obtained from the vastus lateralis. A direct relationship existed between preexercise muscle glycogen content and glycogen utilization during exercise (r = 0.76, P < 0.05). Citrate synthase activity and glucose Rd at the end of exercise averaged 21.9 +/- 3.0 mumol.min-1.g-1 and 27.3 +/- 2.5 mumol.kg-1.min-1, respectively. There was a direct correlation between citrate synthase activity and GLUT-4 protein (r = 0.78, P < 0.05); however, at the end of exercise, glucose Rd was inversely related to both GLUT-4 (r = -0.89, P < 0.01) and citrate synthase activity (r = -0.72, P < 0.05). Plasma insulin, which decreased during exercise, was not related to glucose Rd. In conclusion, glucose uptake during 40 min of exercise at 72% peak pulmonary oxygen consumption was inversely related to the total muscle GLUT-4 protein level. This suggests that factors other than the total GLUT-4 protein level are important in the regulation of glucose uptake during exercise.