This study examined the effect of low-intensity exercise on lactate metabolism during the first 10 min of recovery from high-intensity exercise. Subjects exercised (61.0 +/- 5.4 W) one leg to exhaustion (approximately 3.5 min), and after 1 h of rest they performed the same exhaustive exercise with the other leg. For one leg the intense exercise was followed by rest [passive (P) leg], and for the other leg the exercise was followed by a 10-min period with low-intensity exercise at a work rate of 10 W [active (A) leg]. The muscle lactate concentration after the intense exercise was the same in the P and A legs, but after 10 min of recovery, the lactate concentration and the arterial blood lactate level were higher for the P leg than for the A leg (both P < 0.05). During the recovery, the mean blood flow was lower for the P leg than for the A leg (P < 0.05), whereas the mean lactate efflux was not significantly different. During the 10 min of recovery, lactate release accounted for approximately 60% of the change in muscle lactate for either leg. The leg excess postexercise O2 consumption during 10 min of recovery was 440 and 750 ml for the P and A legs, respectively. The present data suggest that a lowered blood lactate level during active recovery is due to an elevated muscle lactate metabolism and is not caused by a transient higher release of lactate from the exercising muscles coupled with greater uptake in other tissues.(ABSTRACT TRUNCATED AT 250 WORDS)