The effect of antidiuretic hormone (ADH) on a distal nephron cell line (A6) was studied using the whole cell patch-clamp technique. A6 cells were cultured on a permeable support filter for 10-14 days in media containing 10% fetal bovine serum without supplemental aldosterone. In the unstimulated condition A6 cells had very small conductances of Na+,K+, and Cl-. Arginine vasotocin (AVT, 140 mU/ml, 280 nM) evoked a "transient" increase in whole cell currents as did dibutyryl-adenosine 3',5'-cyclic monophosphate (5 mM). These transients consisted of two components; one was the nonselective cation conductance, and the other was the Cl- conductance. Activation of these conductances was dependent on intracellular Cl- concentration ([Cl-]i). At low [Cl-]i (< or = 50 mM) both conductances were activated, whereas when [Cl-]i was 80 mM, only the Cl- conductance was activated. At high [Cl-]i (125 mM), both conductances were inhibited. It seems likely that the [Cl-]i maintained at a low level (< or = 50 mM) is an important requirement for A6 cells to respond to AVT.