A period of hypersensitivity to N-methyl-D-aspartate (NMDA) has been described during the early development of different types of neuron. Since activation of NMDA receptors can also induce rapid neuron death, the hypersensitivity to NMDA may be tightly controlled. In the present study we show that mouse cerebellar granule neurons become transiently hypersensitive to NMDA between days 10 and 14 after plating in a culture medium containing 30 mM K+. The NMDA sensitivity is higher when cells are cultured in the presence of an NMDA receptor antagonist [30 mM K+ plus 100 microM 3-((+/-)-2-carboxypiperazine-4-yl)-propyl-1-phosphonic acid (CPP)], and no hypersensitivity is observed when cells are cultured in the continuous presence of NMDA (12.5 mM K+ plus 100 microM NMDA). The high NMDA sensitivity in control cells is associated with a higher density of NMDA receptors than that measured in NMDA-treated cells, suggesting that the sensitivity to NMDA may be partly controlled by activity-dependent NMDA receptor down-regulation. We also examined the level of NMDA-zeta 1 mRNA and found no correlation between this parameter and the transient pattern of NMDA sensitivity. Such NMDA receptor plasticity may be of importance in the central nervous system, protecting developing cells from excitotoxicity at critical developmental stages.