We developed PCR primers specific for the blaTEM and blaROB ampicillin resistance genes. The specificity of the primers was confirmed by testing a series of Escherichia coli isolates containing a variety of ampicillin resistance genes and a series of ampicillin-resistant and ampicillin-susceptible Haemophilus influenzae isolates. There was a perfect correlation between ampicillin MICs, the presence of beta-lactamase (as determined by the nitrocefin test), and the results with the blaTEM and blaROB primers. Isolates of H. influenzae and Streptococcus pneumoniae obtained from 25 frozen cerebrospinal fluid (CSF) specimens were also tested. Four of 14 H. influenzae isolates were positive with the blaTEM primers; none were positive with the blaROB primers. Ampicillin MICs were determined for the H. influenzae isolates, and penicillin MICs were determined for the S. pneumoniae isolates. Only the four PCR-positive H. influenzae isolates had elevated MICs of ampicillin and were beta-lactamase positive. None of the H. influenzae isolates contained the blaROB gene, and none of the S. pneumoniae isolates produced positive reactions with either primer set. We then used universal primers directed to conserved regions of rRNA and a Haemophilus detection probe to identify which of the 25 frozen samples of CSF contained H. influenzae. Fourteen of the 25 CSF specimens were positive for H. influenzae, which correlated with the number of organisms obtained by culture of the CSF samples. Four of the CSF samples were positive with the blaTEM primer set, and these correlated with the four H. influenzae isolates that were positive when tested directly by PCR. The blaTEM assay required the use of native Taq polymerase because Amplitaq preparations were contaminated with vector DNA that contained the blaTEM-1 gene.