We used the intragastric feeding rat model for alcoholic liver disease to investigate alterations in glucose transporter isoforms GLUT 1 and GLUT 2 in response to different dietary fats and ethanol. Six groups of rats (three rats/group) were fed ethanol or dextrose with either saturated fat, corn oil, or fish (menhaden) oil. All control animals were pair fed the same diets as ethanol-fed rats except that ethanol was isocalorically replaced by dextrose. In all animals, the following were assessed: pathological changes in the liver, immunohistochemical and Western blot analysis of GLUT 1 and GLUT 2 isoforms, and glycogen distribution. The most severe pathological changes were seen in fish oil/ethanol fed rats, moderate changes were seen in the corn oil/ethanol group and no changes were observed in the dextrose-fed or saturated fat/ethanol groups. In the groups of rats showing pathological liver injury (corn oil/ethanol and fish oil/ethanol), the depletion in liver glycogen was accompanied by decreased GLUT 2 expression and increased GLUT 1 expression. A decrease in glycogen and GLUT 2 expression was also seen in the fish oil/dextrose-fed rats. We hypothesize that the shift in glucose transporters from GLUT 2 to GLUT 1 probably reflects a compensatory response to attenuated gluconeogenic activity and to meet the increased intracellular demand for glucose. This demand for glucose in the presence of depleted glycogen may serve to provide a source for ATP synthesis in the centrilobular zone where hypoxia occurs secondary to ethanol metabolism.