The cloning of a cDNA encoding a new member of the highly conserved mammalian 70-kDa heat shock protein (hsp 70) family termed PBP74 was recently reported. Critical to an understanding of the function of this new hsp 70 is delineating its subcellular localization. Here we use a variety of immunological and biochemical approaches both in vitro and in vivo to demonstrate that PBP74 is imported into and resides in mitochondria. By confocal immunofluorescence microscopy PBP74 is detected in mitochondria, colocalizing with the mitochondrial 60-kDa heat shock protein. To address the inherent problem of serological cross-reactivity among the hsp70 family members, an influenza virus hemagglutinin epitope tag was introduced into the PBP74 cDNA. The epitope-tagged PBP74 protein transiently expressed in L cells localized to mitochondria. Moreover, deletion of the N-terminal 46-amino acid presequence results in a cytosolic localization of the epitope-tagged protein. Cell fractionation studies demonstrated PBP74 in purified mitochondria in a protease-protected location. After coupled transcription-translation the precursor of PBP74 is imported into isolated yeast mitochondria, where it becomes processed to the mature protein. According to a subfractionation of the mitochondria, the imported protein was found to be localized in the matrix space. Import in vitro is time- and temperature-dependent, requires matrix ATP, and is abolished upon depletion of the membrane potential across the mitochondrial inner membrane. Similarly, in mammalian cells PBP74 is synthesized as a pre-protein that requires membrane potential-dependent import into mitochondria for its maturation. Taken together, our data demonstrate that PBP74 is a mammalian mitochondrial hsp70.