Background/aims: Several studies have shown that the stomach has sufficient alcohol dehydrogenase activity to metabolize a significant amount of alcohol and that cimetidine depresses this alcohol dehydrogenase activity. However, both gastric metabolism of ethanol and its inhibition by cimetidine remain controversial. Given the difficulty in assessing gastric metabolism of ethanol in vivo, this subject was investigated in vitro.
Methods: Cultured rat gastric epithelial cells were incubated with 200 mmol/L [1-14C]ethanol for 90 minutes with and without cimetidine (0.1-1 mmol/L) or omeprazole (1 mmol/L). The quantity of ethanol oxidized by gastric cells was measured by the amount of acetate produced using ion exchange chromatography.
Results: The majority of cells at confluency had typical features of mucous cells. The gastric cells metabolized significant amounts of ethanol, sufficient to account for in vivo first-pass metabolism of ethanol in rats. Cimetidine, but not omeprazole, reduced ethanol metabolism by 39.9% +/- 4.9% (P < 0.01), an inhibition comparable with that previously reported for first-pass metabolism in vivo.
Conclusions: Gastric cells in tissue culture are capable of significant ethanol oxidation, the in vitro rates are sufficient to account for first-pass metabolism of ethanol in vivo, and cimetidine inhibits ethanol metabolism in tissue culture, an effect that parallels its decrease of first-pass metabolism in vivo.