The phenotype of Human Immunodeficiency Virus-1 (HIV)-infected HUT-78 cell clone (F12) has been described (Federico et al, AIDS Res Hum Retrov 1989; 5: 365-96). Briefly, F12 cells are: i) CD4 down-regulated, ii) non producer and iii) fully resistant to homologous superinfection. We tested whether this phenotype was dependent upon the expression of the HIV-1 genome integrated therein. The SstI/SstI F12 provirus was cloned and inserted in the pLj retroviral vector bearing the neomycin (neo)-Geneticine resistance gene. CD4+ HIV-susceptible CEMss cells were transfected with this construct in the sense orientation. Neo-resistant clones exhibited an integrated viral DNA, low viral mRNA expression and (as in F12 cells) the presence of uncleaved gp160, no gp41 and a small amount of p55 gag precursor. Superinfection of the F12/HIV-DNA-transfected CEMss clones showed that these CD4+ cells had acquired a significant (0.7-1.5 logs) resistance towards superinfection with HIV-1. This was observed in all four transfected clones where the F12/HIV DNA was expressed, but not in the control clone that was transfected with the pLj vector alone. These results confirm those that were obtained with human CD4+ CEMss cells infected with a recombinant retrovirus bearing the same SstI/SstI F12/HIV genome (Federico et al, J Gen Virol, 1993, in press). Both sets of results indicate that the expression of this genome in bio-engineered CD4+ human cells results in their intracellular immunization against HIV-1.