The pattern of synaptic interactions between neurons of the nucleus tractus solitarius (NTS) has been analyzed using whole cell recording in rat brainstem slices. Following tractus solitarius (TS) stimulation 15/55 neurons presented a prolonged (up to 300 ms) increased excitability (PIE neurons) and 40/55 neurons presented a prolonged (up to 200 ms) reduced excitability (PRE neurons). In the absence of afferent sensory input all neurons showed spontaneous synaptic activity. Ongoing synaptic activity in PIE cells was glutamatergic and characterized by the absence of detectable inhibitory potentials while in PRE cells it was 90% GABAergic and 10% glutamatergic. Glutamatergic synaptic currents in PIE cells and GABAergic synaptic currents in PRE were studied using probability density and intensity functions. Distribution of time intervals between synaptic events indicated the latter were generated, in both PIE and PRE cells, by two simultaneous processes: (1) a close to Poisson process generating independent events; and (2) a subsidiary re-excitatory process generating synaptic events separated by intervals shorter than 20 ms. Blockade of glutamatergic transmission by 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX; 10 microM) or blockade of action potentials by tetrodotoxin (TTX; 1 microM) suppressed the subsidiary process. In conclusion, we propose that PIE cells (1) form a re-excitatory network contributing to generation of excitatory activity in the NTS and (2) are located presynaptically with respect to PRE cells.