We investigated the expression of HOXB cluster genes in purified phytohemagglutinin (PHA)-activated T lymphocytes from normal adult peripheral blood by reverse transcription PCR and RNase protection. These genes are not expressed in quiescent T cells, except for barely detectable B1 RNA. After the PHA stimulus, HOXB gene activation initiates coordinately as a rapid induction wave in the 3'-->5' cluster direction (i.e., from HOXB1 through B9 genes). Thus, (i) expression of the foremost 3'-located B1 and B2 genes peaks 10 min after PHA addition and then rapidly declines, (ii) activation of B3, B4, and B5 begins 10 min after PHA addition and peaks at later times (i.e., at 120 min for B5), (iii) B6, B7, and B9 are expressed at a low level starting at later times (45 to 60 min), and (iv) B8 remains silent. Treatment of PHA-activated T lymphocytes with antisense oligonucleotides to B2 or B4 mRNA causes a drastic inhibition of T-cell proliferation and a decreased expression of T-cell activation markers (i.e., interleukin 2 and transferrin receptors). Similarly, treatment of CEM-CCRF, Peer, and SEZ627 T acute lymphocytic leukemia cell lines with anti-B4 oligomer markedly inhibits cell proliferation. Finally, T cells stimulated by a low dosage of PHA in the presence of 1 microM retinoic acid show a marked increase of both HOXB expression, particularly B2, and cell proliferation. These studies provide novel evidence on the role of HOX genes in adult cell proliferation. (i) Coordinate, early activation of HOXB genes from the 3'-->5' cluster side apparently underlies T-cell activation. (ii) The expression pattern in adult PHA-activated T cells is strikingly similar to that observed in retinoic acid-induced teratocarcinoma cells (A. Simeone, D. Acampora, L. Arcioni, P. W. Andres, E. Boncinelli, and F. Mavilio, Nature (London) 346:763-766, 1990), thus suggesting that molecular mechanisms underlying HOX gene expression in the earliest stages of development may also operate in activated adult T lymphocytes.