Under scotopic conditions, the mammalian rod encodes either one photon or none within its integration time. Consequently the signal presented to its synaptic terminal is binary. The synapse has a single active zone that releases neurotransmitter quanta tonically in darkness and pauses briefly in response to a rhodopsin isomerization by a photon. We asked: what minimum tonic rate would allow the postsynaptic bipolar cell to distinguish this pause from an extra-long interval between quanta due to the stochastic timing of release? The answer required a model of the circuit that included the rod convergence onto the bipolar cell and the bipolar cell's signal-to-noise ratio. Calculations from the model suggest that tonic release must be at least 40 quanta/s. This tonic rate is much higher than at conventional synapses where reliability is achieved by employing multiple active zones. The rod's synaptic mechanism makes efficient use of space, which in the retina is at a premium.